skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hayden, Meghan T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Risks in globally interconnected socio-environmental systems are complex: trade, migration, climate phenomena such as El Niño, and other processes can both redistribute and modulate risks. Here we argue that risk must be investigated not only as a product of these systems but also as a force that rewires them through, for example, supply diversification, trade policy, insurance and other contracting, or cooperation. Two key questions arise: how do individuals and institutions perceive risks in these global, complex systems, and how do attempts to govern risks change how the systems function? We identify several areas for interdisciplinary research to address these questions. 
    more » « less
  2. As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026